

Trees for Building a Revetment

Remember these points when choosing trees for a revetment:

The more limbs and fine branches a tree has, the better it will slow current and trap silt in a tree revetment. For this reason, eastern red cedar is usually the best choice. Cedar trees have the added advantage of good resistance to decay. Hardwood trees with brushy tops (like pin oak) will also work.

Trees growing in uncrowded conditions are usually the best choice because their branches are denser. When growing in close competition with other trees, even cedars can have sparse tops.

It is best to cut live trees for revetments; trees which have been dead for some time are usually brittle and may break apart as they are moved into place and anchored.

Tree size is important. The diameter of the tree's crown should be about twothirds the height of the eroding bank. A large tree covers more bank than a small one and isn't much more difficult to move into place. Both time and money can be saved by using the biggest trees available. Trees that are more than 20 feet tall are best for most streambanks.

After felling trees, it is best to cut off any trunk at the bottom of the tree that is without limbs. The tree limbs are what protect the bank - any excess trunk is simply extra weight that makes it more difficult to move the tree into place.

Building a Tree Revetment

Equipment and techniques for building a tree revetment can vary, but some basic steps are always necessary.

If the trees are cut near where they are to be installed, they can be dragged to the revetment site. A fourwheel-drive pickup or tractor can move even large trees in this way.

Once the trees have been moved to the top of the eroding bank, they are ready to be placed against the bank. This can be done with a long cable attached to a truck or tractor on the opposite bank. Trees can also be

pushed over the bank edge with a front-end loader mounted on a tractor. Caution: When this method is used, it is important to avoid coming too close to the bank edge because it could collapse. Workers in the stream should stay well clear of cables, chains and trees as they are pulled over the edge.

Construction of the revetment begins at the downstream end of the eroding streambank. The first tree is moved into place on the eroded surface, with the butt end pointed upstream. The tree is placed tightly against the banks and anchored at both ends. (See the next section for anchoring procedures.) Another tree is then moved into place with its top overlapping the butt of the first tree, so that no gap between the two exists. The cable used to anchor the butt of the first tree is then secured to the top of the second tree (see above illustration) and a new anchor is put in at the butt of the second tree. This process is continued upstream until the entire bank is covered with trees.

Overlapping the trees ensures that no gaps are left in which erosion can occur. It also reduces anchoring costs by allowing each anchor to hold both the butt of one tree and the top of the next.

It is usually necessary to pull trees tightly against the bank before anchoring them in place. This can be done by attaching a chain or cable to the trees and pulling them against the bank with a truck or tractor.

Building a Tree Revetment

1. First tree is moved into place on bank. Arrow shows direction of current.

3. Tree is pulled tightly against bank and anchored at points shown by arrows

2. Tree is pulled into stream. A tractor with a front-end loader can also be used to drop trees into place

4. Next tree is pulled into place and the process is repeated. Smaller trees can be placed by hand.

Designing, Planning and Maintaining a Tree Revetment. When to build a tree revetment - Although revetments can be built during any season, late winter and early spring are usually the best times. Cedar trees placed in early summer can dry out and lose their needles before being flooded. They are most effective at trapping silt and sand if flooded while still green and supple. Timing is not so important when hardwood trees are used.

Where to begin and end the revetment - Tree revetments must always begin and end at a point on the bank that is not eroding. If a revetment does not completely cover an eroding stream stream bend, the unprotected section will continue to erode. It may even erode faster!

Placing trees on the bank toe - Each tree in a revetment should be anchored at a point near the bank 'toe." The streambank's toe is simply the notch formed where the vertical stream bank meets the horizontal bottom. If trees are anchored too high on the bank, hey may be undermined. If they are too far from the streambank, currents may cut between the revetment and the bank. Because the stream's waterline may be above or below the bank tow, the waterline is not a good reference point. On small streams (those not floatable in a canoe during low water) the bank toe will usually be very near the waterline. On larger streams the toe may be three feet or more below the waterline. In any case, if the bank toe is more than 2.5 feet below the waterline, installation of a tree revetment may not be advisable.

Constricting the stream channel - Although there is no good rule of thumb, stream channels should not be made significantly narrower by the tree revetment. Generally, a revetment won't cause problems if al trees are anchored tightly against the eroding bank. It is also important that no large, single limbs protrude into the channel away from the rest of the revetment. These will not help protect the bank and, on float streams, may be a hazard to boats.

Gaps in the revetment - don't leave gaps between trees or between trees and the bank. Gaps left after construction or caused by flooding can usually be filled with small cedar trees cabled to the larger ones already in place. Revetments should be inspected after floods and any opening repaired before they become larger.

Maintaining a wooded corridor - it is essential to bank stability that a wooded strip at least 100 feet wide be left or established on both sides of the stream. All streambanks erode gradually, and if no wooded corridor is established behind a tree revetment, the few trees along the bank will eventually be lost to this erosion and the bank will again become unstable. Livestock should be excluded

from stream corridors. if the bank or 100-foot corridor are grazed, little new growth of trees will occur. Any mature trees present will grow old and die and no young trees will be around to take their place.